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Rates  of  m i c r o s o m a l  17~-est radiol  (E2) hyd roxy l a t i on  at the C-2, -4, -6~, and  -15~ posi t ions are  each 
induced  g r e a t e r  t han  10-fold by t r ea t ing  MCF-7 b reas t  cance r  cells with 2 ,3 ,7 ,8- te t rachlorodibenzo-  
p - d i o x i n  (TCDD).  The  T C D D - i n d u c e d  act ivi t ies  at the C-2, -6~ and  -15~ posi t ions have been 
a t t r i b u t e d  to c y t o c h r o m e  P450 1A1 (CYP1A1); however ,  the low K,, 4 -hydroxy lase  induced  by TCDD 
appea r s  to be a dis t inct  enzyme.  We r e p o r t  he re  tha t  an t ibodies  to c y t o c h r o m e  P450-EF (mouse  
CYP1B1) select ivi ty  inh ib i ted  the C-4 hyd roxy l a t i on  of  E2 ca ta lyzed  by m i c r o s o m e s  f r o m  T C D D -  
t r e a t e d  MCF-7  cells. Wes te rn  blots p r o b e d  with an t i -CYP1B ant ibodies  showed the induc t ion  of  a 
52 kDa m i c r o s o m a l  p r o t e i n  in response  to t r e a t m e n t  with TCDD in MCF-7 cells. Wes te rn  blots of  
m i c r o s o m e s  f r o m  HepG2 cells did not  show the T C D D - i n d u c e d  52 kDa pro te in ,  and m i c r o s o m e s  
f r o m  T C D D - t r e a t e d  HepG2 ceils did not  ca ta lyze  a low K,, hyd roxy l a t i on  of  E z at C-4. Cel lu lar  
m e t a b o l i s m  e x p e r i m e n t s  also showed induc t ion  of  bo th  the C-2 and -4 h y d r o x y l a t i o n  pa thways  in 
T C D D - t r e a t e d  MCF-7  cells as ev idenced  by e levated  2- and 4 -me thoxyes t r ad io l  (MeOE2) fo rma t ion .  
In con t ras t ,  T C D D - t r e a t e d  HepG2 ceils showed 2-MeOE2 f o r m a t i o n  p r e d o m i n a n t l y  over  4-MeOEz. 
N o r t h e r n  blots of  RNA isola ted f r o m  u n t r e a t e d  and T C D D - t r e a t e d  ceils, when p r o b e d  with the 
h u m a n  CYP1B1 cDNA, showed induc t ion  of  a 5.2 kb RNA in MCF-7 cells bu t  not  in HepG2 cells in 
response  to t r e a t m e n t  with TCDD.  These  resul ts  p rov ide  addi t iona l  evidence for  the induc t ion  by 
TC D D  of  a novel  E2 4 -hydroxy lase  in MCF-7 cells bu t  not  in HepG2 ceils and indica te  possible 
endoc r ine  r e g u l a t o r y  roles for  the newly d i scovered  g roup  of  enzymes  of  the CYP1B subfami ly .  
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INTRODUCTION 

The metabolism of 17fl-estradiol (E2)  in extrahepatic 
tissues often differs from that in the liver in the relative 
importance of the 17fl-hydroxysteroid dehydrogenase- 
catalyzed reaction leading to the formation of estrone 
(E~), and in the relative rates of hydroxylation at the 
C-2 and -4 positions, forming the catecholestrogens. 
In liver, E 2 is predominantly converted to E~, and the 
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major sites of  hydroxylation are C-2 and -16~, with C-4 
hydroxylation being of minor  importance [1]. In estro- 
gen-responsive tissues such as breast and uterus the 
conversion of E~ to E z can be favored [2, 3] and the 
constitutive rates of E2 hydroxylation are quite low in 
comparison to liver. Extrahepatic tissues that have been 
shown to catalyze significant catecholestrogen for- 
mation include the mouse uterus [4], rat anterior 
pituitary [5], and Syrian hamster  kidney [6]. In each of 
these tissues the relative rate of E 2 4-hydroxylation is 
comparable to or exceeds that of  E2 2-hydroxylation. 
Evidence of the existence of specific E2 4-hydroxylases 
has been presented [5, 6], although none have been 
purified or extensively characterized. 

In this laboratory we have used M C F - 7  breast tumor  
cells in culture as a model of estrogen-responsive 
human tissues for studies of the regulation of E 2 
metabolism [7, 8]. We found that constitutive rates of 
E 2 metabolism in untreated cultures were minimal,  but 
t reatment  with the aromatic hydrocarbon (Ah) receptor 
agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin ( T C D D )  
caused a marked increase in the rate of E2 metabolism, 
resulting in depletion of the hormone from the cul- 
tures. Rates of microsomal cytochrome P450-catalyzed 
hydroxylation of E2 at the C-2, -4, -6e, and -15~ 
positions were each elevated more than 10-fold by 
treatment  with T C D D  [7]. Studies with specific anti- 
sera and cDNA-expressed  enzymes indicated that the 
hydroxylations at the C-2, C-15cq and C-6c~ positions 
of E2 observed with microsomes from T C D D - t r e a t e d  
M(2F-7 cells were attributable to the activity of  
CYP1A1, although the low K,, hydroxylation of E 2 at 
C-4 appeared to be catalyzed by a distinct T C D D -  
inducible enzyme [8]. 

Currently the most  thoroughly described cyto- 
chrome P450s that are induced by Ah-receptor  agon- 
ists are those of the CYP1 gene family. CYP1A1 and 
CYP1A2 are induced by T C D D ,  3-methylcholan- 
threne, and other halogenated and nonhalogenated 
aromatic hydrocarbons.  CYP1A1 is induced in liver 
and in a number  of other tissues. The  5' region of the 
human C Y P I A I  gene contains four xenobiotic re- 
sponse elements (XREs) that are thought  to be the sites 
of interaction of the l igand-bound Ah receptor, facili- 
tating gene transcription [9]. CYP1A2 appears to be 
primarily an hepatic enzyme that is expressed constitu- 
tively, and the human C Y P 1 A 2  gene contains a single 
5' XRE.  Both (2YPIA1 and (2YP1A2 catalyze (2-2 
hydroxylation of E 2 at much  higher rates than (2-4 
hydroxylation, this predominance of (2-2 hydroxylation 
over C-4 hydroxylation is observed with CYP1A1 and 
CYP1A2 from rat [10] and human [8, 11] sources. 

Recent studies indicate that Ah-receptor  agonists 
induce the expression of cytochrome P450 genes in 
addition to the two known members  of the C Y P I  gene 
family. Trea tmen t  of C3H/10T1/2  mouse embryo 
fibroblast cells with benz[a]anthracene or T C D D  in- 
duces a polycyclic aromatic hydrocarbon (PAH)- 

metabolizing enzyme, termed P450-EF,  that is distinct 
from CYP1A1 and CYP1A2 [12, 13]. A cytochrome 
P450 that is immunologically related to P450 - E F  has 
been purified from rat adrenals and has been termed 
P450-RAP [14]. Trea tment  of the human keratinocyte 
cell line, SCC-12F,  with T C D D  induced expression of 
a number  of genes [15], one of which (clone 1) was that 
of a novel cytochrome P450. D N A  sequence analysis of  
this human c D N A  clone resulted in the identification 
of a novel cytochrome P450 that is 40°.0 identical to the 
deduced amino acid sequences of  human CYP1A1 and 
CYP1A2 [16]. This  c D N A  has been designated as 
CYP1B1 in accordance with the recommended cyto- 
chrome P450 nomenclature system [17]; however, the 
properties and substrate specificity of  the cytochrome 
P450 encoded by the human C Y P I B 1  gene are 
entirely unknown. The  recent cloning and sequencing 
of a c D N A  of cytochrome P450 -EF  showed that 
P450 -EF  is 41% identical to mouse CYP1A1 and 81°o 
identical to human CYP1B1, indicating that P 4 5 0 - E F  
is also a member  of the CYP1B subfamily and is 
tentatively referred to as mouse CYP1B1 [18]. The  
discovery of these novel cytochromes P450 that are 
induced in response to Ah-receptor  activation led us to 
hypothesize that the low Km E2 4-hydroxylase activity 
of T C D D - t r e a t e d  M C F - 7  cells is catalyzed by a 
member  of the CYP1B subfamily. In this study we 
investigated the effects of T(2DD on C Y P I B I  
gene expression and on E 2 metabolism in two well- 
characterized cell lines, M C F - 7  and HepG2.  

M A T E R I A L S  A N D  M E T H O D S  

Cell culture 

M C F - 7  cells originally obtained from Dr  Alberto C. 
Baldi (Insti tute of Experimental  Biology and Medicine, 
Buenos Aires, Argentina) were used routinely, 
although in some experiments cells of a M C F - 7  strain 
kindly provided by Dr  Nancy E. Davidson (Johns 
Hopkins Universi ty Baltimore, M D )  were used. Stock 
cultures were maintained in plastic tissue culture flasks 
using medium consisting of Dulbecco 's  modified 
Eagle's medium supplemented with 5°o bovine calf 
serum (HyClone,  Logan, UT) ,  insulin (10 ng/ml), L- 
glutamine ( 2 m M ) ,  and nonessential amino acids 
(10 mM,  G I B C O  BRL,  Grand Island NY). Penicillin 
(100U/ml)  and streptomycin (100#g/ml)  were also 
included. The  complete medium was filter-sterilized by 
using 500 ml capacity 0.2 # m  pore-size plastic nalgene 
filter units from Nalgene (Rochester, NY) as previously 
described [19]. 

HepG2  cells, obtained from the American T y p e  
Culture Collection, were grown in Dulbecco 's  modified 
Eagle's medium containing 10% fetal bovine serum, 
penicillin (100U/ml)  and streptomycin (100#g/ml) .  
Roller-bottle cultures (1000 cm 2) of  M C F - 7  cells and 
H e p G 2  cells were established for the preparat ion of 
microsomes. These cultures were either treated with 
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10 nM T C D D  or with the solvent vehicle, 0.1°o (v/v) 
dimethyl sulfoxide (DMSO) in medium, for 72h 
prior to preparation of microsomes by the method of 
Guzelian et al. [20]. Cellular E 2 metabolism exper- 
iments were carried out with flask cultures (75 cm2). 

E2 metabolism assays 

Rates of E z metabolism by both microsomes and 
cultures of intact cells were determined by using assay 
procedures employing gas chromatography/mass spec- 
trometry (GC/MS) of the metabolite trimethylsilyl 
(TMS) derivatives with quantitation by the stable 
isotope dilution technique [21]. For the determination 
of microsomal E2 hydroxylase activity, incubations 
contained 500/~g of microsomal protein, 1.4mM 
NADPH, 5 m M  MgC12, 2 m M  ascorbic acid, and 
varying concentrations of E 2 as  substrate. Assays were 
terminated by extraction with ethyl acetate, and after 
evaporation of the solvent under N2, TMS derivatives 
of the hydroxylated metabolites were prepared as 
described previously [7]. 

For the analysis of cellular E 2 metabolism by cultures 
of MCF-7 and HepG2 cells, cultures were exposed to 
10nM T C D D  or the solvent vehicle only (0.1°o v/v 
DMSO in medium) for 72 h. The cultures were then 
refed with medium containing 100 nM Ez, and after 4 h 
the medium was recovered for the analysis of E2 
metabolites. Two milliliter aliquots of the medium 
were adjusted to pH 5 by addition of 10°o acetic acid, 
and type H-2 fl-glucuronidase/aryl sulfatase was added 
(5400U fl-glucuronidase and 130U aryl sulfatase) 
followed by incubation at 37°C for 18 h for hydrolysis 
of the E2 metabolite conjugates. After hydrolysis of the 
conjugates, samples were then applied to Extrelut QE 
columns (EM Science, Cherry Hill, NJ) for solid-phase 
extraction of the E2 metabolites. The columns were 
eluted with two 6-ml portions of methylene chloride. 
The methylene chloride fraction was evaporated under 
Nz, and TMS derivatives of the metabolites were 
prepared for GC/MS analysis. 

Analysis of the TMS derivatives of the E2 metab- 
olites was performed by a slight modification of the 
GC/MS procedure described previously in that a 
different capillary GC column was used. Chromatog- 
raphy was performed on a 30m x 0.2mm DB-I 
column with 0.25-/~m film thickness (J & W Scientific, 
Folsum, CA) with He as carrier gas at a head pressure 
of 80 kPa. The temperature program for this column 
consisted of an initial temperature of 180°C and a ramp 
at 3°C/rain to a final temperature of 300°C. Selected- 
ion monitoring of the molecular and major fragment 
ions of the E 2 metabolites [21] was performed as 
described previously [7] with the exception that an 
additional internal standard was included. For the 
determination of 2- and 4-MeOE 2 by the stable isotope 
dilution technique, 4,16,16,17-[2H 4 ] 2 - M e O E 2  was syn- 
thesized by the method of Dehennin et al. [22] and used 
as the internal standard. The TM S derivative of this 

compound was monitored at m / z 4 5 0 . 2 .  All E 2- 

metabolite standards were purchased from Steraloids 
Inc. (Wilton, NH) except 15~-OHE2, which was a 
generous gift of Dr Richard Hochberg (Yale University 
Medical School, New Haven, CT). 

Immunoinhibition and immunoblots 

The polyclonal antibodies to cytochrome P450-EF, 
IgY, were those raised in female Leghorn White 
Chickens and purified from their eggs [13]. Polyclonal 
antibodies to P450-RAP were those raised in New 
Zealand White rabbits [14]. Sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE) was 
performed as described by Laemmli [23], and Western 
immunoblots of the 7°0 acrylamide resolving gels were 
prepared as described previously [24]. Immunoreactive 
proteins were visualized by using the enhanced chemi- 
luminescence detection system (Amersham Life 
Science, Bucks., England) according to the protocol of 
the manufacturer. Immunoinhibition of microsomal E2 
metabolism was determined as described previously 
[8], with a 20-min preincubation with preimmune or 
immune IgY followed by a 10-min preincubation with 
the E2 substrate, and initiation of the E 2 hydroxylase 
assay by addition of NADPH. 

Isolation of R N A  and Northern blots 

Total RNA was isolated from MCF-7 and HepG2 
cultures by the guanidinium thiocyanate-phenol- 
chloroform extraction technique of Chomczynski and 
Sacchi [25]. RNA was denatured by treatment with 
glyoxal [26] prior to electrophoresis in 1% (w/v) 
agarose gels. The RNA was transferred to Nytran 
membranes (Schleicher and Schuell, Keene, NH). The 
blots were successively probed with CYP1A1 [27] or 
CYP1B1 (clone 1; Ref. [15]) and glyceraldehyde 3- 
phosphate dehydrogenase (GADPH) [28] cDNAs that 
had been 32p-labeled by random priming [29]. Nonspe- 
cific hybridization was removed by washing the blots 
with 1 x SSC and 0.1% SDS for 2h. The hybridiz- 
ations were visualized by autoradiography and 
quantified by densitometry. 

Other methods 

Protein concentrations were determined by the dye- 
binding method of Bradford [30] with a commercially 
available reagent (BioRad, Hercules, CA). Cellular 
DNA content was determined by using the fluoromet- 
tic technique with Hoechst dye as described previously 
[19]. Statistical comparisons were performed by using 
the two-tailed t-test. 

R E S U L T S  

The effects of anti-P450-EF antibodies o n  E 2 

hydroxylation catalyzed by microsomes from 
TCDD-treated MCF-7 cells are shown in Fig. 1. 
Anti-P450-EF IgY caused a selective and concen- 
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t rat ion-dependent inhibition of E 2 hydroxylation at the 
C-4 position. The  inhibition of hydroxylation at C-4 by 
ant i -P450-EF IgY was significant when compared with 
that by preimmune IgY, whereas the hydroxylation at 
C-2, -6~, and -15~ was not significantly inhibited. This 
result is the converse of what was observed with 
anti-P450 1A antibodies, where hydroxylation at the 
C-2, -15~, and -6~ positions was inhibited with anti- 
P450 1A IgG, but not hydroxylation at C-4 [8]. 

The  chicken ant i -P450-EF IgY antibody prep- 
arations were previously found to be poor reagents for 
use in Western immunoblots,  despite their potent 
inhibition of cytochrome P450-EF-catalyzed PAH 
metabolism [13]. However,  antibodies raised in rabbits 
against cytochrome P450-RAP were found to be useful 
for immunodetection in Western blots [14] and also 
recognized antigenic determinants of cytochrome 
P450-EF [13, 41]. Western immunoblots,  when 
probed with ant i -P450-RAP antibodies, showed that a 
protein was induced in MCF-7  cells by treatment with 
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Fig. 1. Effect of  an t i -P450 -EF  an t ibodies  on E 2 hyd roxy la t i on  
ca ta lyzed  by m i c r o s o m e s  f r o m  T C D D - t r e a t e d  MCF-7  cells. 
M i c r o s o m e s  were  p r e i n c u b a t e d  wi th  an t ibodies  and  assayed  
for hyd ro l a se  act ivi ty  with 25/~M E z as desc r ibed  prev ious ly  
[9]. In A, the  effect of  va ry ing  an t ibody  concen t ra t ion ,  in m g  
ant i  P450-EF IgY per  m g  of  m i c r o s o m a l  pro te in ,  is shown for 
C-2 ( l l ) ,  C-4 (&), C-6~ ( + ) and  C-15~ ([7) hydroxyla t ion .  In 
B, the  effects of  p r e i m m u n e  (17) and  an t i -P450-EF [17] 
an t ibodies  ( 1 ) ,  each 2 m g  IgY per  m g  m i c r o s o m a l  pro te in ,  
on hyd roxy la t i on  at  each posi t ion are  shown with 
m e a n  + s t a n d a r d  e r ror ,  n = 4. The  as te r i sk  indica tes  signifi-  
cant  inh ib i t ion  (P < 0.05) for  an t i -P450-EF  as c o m p a r e d  to 

p r e i m m u n e  control .  
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Fig. 2. W e s t e rn  i m m u n o b l o t  of  m i c r o s o m e s  f r o m  MCF-7  
cells. M i c r o s o m a l  p ro te in  f r o m  u n t r e a t e d  (lane 2, 6 pg; lane 
3, 12 vg) and  T C D D - t r e a t e d  (lane 4,6/~g; lane 5, 12 pg) MCF-7  
cells was ana lyzed  by S D S - P A G E  a nd  W e s t e r n  i m m u n o b l o t  
with a n t i - P 4 5 0 - R A P  IgG [18]. I m m u n o r e a c t i v e  p ro te ins  were 
v isual ized by the  e n h a n c e d  c h e m i l u m i n e s c e n c e  s ta in ing  pro-  
cedure .  M i c r o s o m a l  p ro te in  (4 pg) f r o m  be nz [= ]a n th r acene -  
t r ea t ed  C3H/10T1/2 cells was r u n  in lane 1; the  55kDa 

i m m u n o r e a c t i v e  b a n d  r e p r e s e n t s  P450-EF.  

T C D D  which was immunoreactive with antibodies to 
cytochrome P450-RAP. A Western immunblot  of 
microsomes from untreated and TCDD- t rea ted  M C F -  
7 cells with immunodetection by using ant i -P450-RAP 
antibodies is shown in Fig. 2. The  TCD D - induced  
protein that was immunoreactive with ant i -P450-EF 
antibodies migrated in S D S - P A G E  with an apparent 
molecular weight of 52 kDa (lanes 4 and 5), a somewhat 
greater mobility than cytochrome P450-EF from 
C3H/10T1/2 cells, which migrated with an apparent 
molecular weight of 55 kDa (lane 1). Western immuno- 
blots of microsomes from HepG2 cells, when probed 
with ant i -P450-RAP antibodies, did not show the 
presence of induction by T C D D  of the 52-kDa protein 
(data not shown). These results are consistent with 
those of parallel studies in which yet another antibody 
was used. Western immunoblots probed with rabbit- 
ant i -P450-EF showed the induction of a 52-kDa 
microsomal protein in MCF-7  cells, but not in HepG2 
cells, in response to treatment with T C D D  [31]. 

The  metabolism of E 2 by microsomes from HepG2 
cells was investigated and compared with that which 
has been characterized for MCF-7  cells [9]. Unlike 
those from MCF -7  cells, microsomes from untreated 
(0.1°:~, v/v D M S O  control) HepG2 cells catalyzed 
measurable E2 hydroxylase activity at the C-2 position 
(Table 1). Microsomes from TCDD- t rea t ed  HepG2 
cells showed marked induction of E 2 hydroxylase 
activity at the C-2, -15~, and -6~ positions and less 
induction at C-4. These data were consistent with the 
known induction of CYP1A1 in HepG2 cells [32]. The  
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Table 1. E 2 hydroxylation catalyzed by microsomes from un- 
treated and TCDD-treated HepG2 cells 

E z hydroxylation [pmol/(min.mg)] ~ 

Metabolite Control TCDD-treated 

2-OHE 2 0.36 + 0.04 5.95 + 0.28 
6c~-OHE z ND h 5.10 + 0.24 
15~-OHE 2 ND h 4.61 _+ 0.28 
4-OHE 2 ND b 0.66 + 0.07 

~Velocities were determined with 500 #g of microsomal protein and 
an E 2 concentration of 25/~M. Values are the mean + standard 
error of three determinations. 

bNot detected [ < 0.1 pmol/(min, mg)]. 

C-2,  -6a and -15~ posi t ions  of  E 2 are sites of  hydroxy l -  

at±on cata lyzed by h u m a n  CYP1A1  [8], wh ich  also has 

m i n o r  act ivi ty  at the C-4  posi t ion.  

T h e  substra te  concen t ra t ion  in the mic rosomal  assay 

was lowered  50-fold to 0 .5 /~M E 2 to invest igate  h igh-  

affinity ca techoles t rogen  synthe t ic  act ivi ty  in H e p G 2  

and M C F - 7  mic rosomes .  T h e  low Km C-4  hydroxylase  

act ivi ty  o f  mic rosomes  f rom T C D D - t r e a t e d  M C F - 7  

cells was readi ly  obse rved  u n d e r  these condi t ions ,  as 

the rate o f  C-4  hydroxy la t ion  was 60% that  o f  C-2  

hydroxy la t ion  (Tab le  2). E x p e r i m e n t s  wi th  mic rosomes  

f rom ei ther  cont ro l  or  T C D D - t r e a t e d  H e p G 2  cells, 

however ,  p r o v i d e d  no ev idence  of  a low Km C-4  hy-  

droxylase  act ivi ty.  H y d r o x y l a t i o n  o f  E2 at C-4  catalyzed 

by mic ro somes  f rom T C D D - t r e a t e d  H e p G 2  cells was 

barely  measurab le ,  as the rate was only 7°0 that  o f  C-2  

hydroxyla t ion .  T h e  C-2  hydroxylase  act ivi ty  of  mic ro -  

somes f rom cont ro l  H e p G 2  cul tures  was obse rved  wi th  

0.5 # M  E 2 as substra te ,  ind ica t ing  that  this is a low Km 

hydroxyla t ion .  

Since the rapid  me thy l a t i on  o f  2- and 4 -OHE2  cata- 

lyzed by catechol  O - m e t h y l t r a n s f e r a s e  occurs  in many  

tissues and in bo th  M C F - 7  and H e p G 2  cells, the  

re la t ive  amoun t s  of  2- and 4 - M e O E  2 released into the 

m e d i u m  by intact  cells in cul ture  were  de t e rm ined  as 

a measure  of  the relat ive rates of  the C-2  and C-4  

hydroxy la t ion  pa thways  o f  E2 metabo l i sm.  As bo th  cell 

lines also have me tabo l i t e - con juga t ing  activit ies,  med ia  

were  t rea ted  wi th  f l -g lucuron idase /a ry l  sulfatase pr ior  

to analysis o f  2- and 4 -MeOE2  by G C / M S .  A l t h o u g h  

lOO 

¢ -  

E l o o  

(1) 

loo 

A 

A5 
-B 

-MeO 2MeOE 2 

33 a4 
Minutes  

Fig. 3. Methoxyestrogen production by TCDD-treated MCF- 
7 and HepG2 cells. After t reatment for 72h with 10nM 
TCDD, cultures of MCF-7 and HepG2 cells were exposed to 
medium containing 100nM E r  After 4h the m e d i a  were  
removed ,  treated with g lucuronidase / su l fa tase  for 18 h, and 
the metabolites were recovered by solid-phase extraction. 
Trimethylsilyl derivat ives  of  the metabolites were prepared 
and analyzed by GC/MS. Shown are the selected-ion chro- 
matograms for the molecular ion of the trimethylsilyl 
derivatives of the methoxyestrogens at rn/z 446.2 for A, 
methoxyestrogen production by TCDD-treated MCF-7 cells; 
for B, methoxy-estrogen production by TCDD-treated 
HepG2 cultures; and C, 4- and 2-MeOE 2 standards, both 

19 pmol on column. 

the f l -g lucuron idase /a ry l  sulfatase used in this s tudy 

was a c rude  extract ,  we found  that  incuba t ion  wi th  this 

p repara t ion  had negl igible  effect on the recover ies  of  

the two metabol i tes  we measu red  in the cel lular  me tab -  

ol ism studies,  2- and 4 - M e O E  2 . W h e n  2- and 4 - M e O E  2 

were  added  to cu l ture  m e d i u m  fo l lowed by incuba t ion  

with  the f l -g lucuron idase /a ry l  sulfatase as descr ibed,  

the recover ies  of  2- and 4 - M e O E  2 were  101 + 4 and 

95 + 2°:0, respect ive ly  (mean + SD,  n = 4). Se lec ted-  

ion ch rom a tog ram s  f rom the analysis of  2- and 4- 

M e O E  2 in the m e d i u m  f rom H e p G 2  and M C F - 7  

cul tures  are shown in Fig.  3. P r e t r ea tm en t  wi th  10 n M  

T C D D  resul ted  in 28- and 14-fold increases in the 

Table 2. Effect of treatment with TCDD on catecholestrogen 
formation catalyzed by microsomes from M C F -  7 and HepG2 

cells 

E 2 hydroxylation (pmol/(min.mg)) a 

Microsomes 2-OHE 2 4-OHE 2 

MCF-7 Control ND b ND b 
10 nM TCDD 0.92 ± 0.05 0.55 _+ 0.03 

HepG2 Control 0 13 + 0.01 ND b 
10 nM TCDD 0.43 _+ 0.02 0.03 + 0.01 

"Velocities were determined with 500/~g of microsomal protein and 
an E 2 concentration of 0.5 pM. Values are mean + standard error 
of three determinations. 

bNot detected [<0.02 pmol/(min.mg)]. 

Table 3. Effect of treatment with TCDD on methoxyestrogen 
formation in M C F -  7 and HepG2 cells 

Methoxyestrogen formation 
[pmol/(h.mg cell DNA)] a 

Cells Treatment 2-MeOE 2 4-MeOE 2 

MCF-7 Control 1.04 + 0.09 0.67 _+ 0.12 
10 nM TCDD 29.13 + 0.15 b 9.34 + 0.24 b 

HepG2 Control 0 80 + 0.06 0.17 + 0.04 
10 nM TCDD 5.42 q- 0 . 3 4  b 0.22 + 0.01 

"Results are the mean + standard error of four cultures with 100 nM 
E 2 in the medium. 

bIndicates significantly different (P < 0.001) vs controls. 



256 David C. Spink et al. 

A 1 2 3 4 

CYP1A1 

GAPDH 

U 

Shown in Fig. 4 are the results of these Northern blot 
analyses. Levels of CYP1A1 m R N A  were increased 38- 
and 129-fold after treatment with 10 nM T C D D  for 
24h  in the M C F - 7  [Fig 4(A), lanes 1 and 2] and 
HepG2 [Fig. 4(A), lanes 3 and 4] cell lines, respect- 
ively. In contrast, the expression of the 5.2 kb CYP1 B1 
m R N A  is induced 34-fold in M C F - 7  cells [Fig. 4(B), 
lanes 1 and 2], while its expression is negligible in both 
controls and TCDD-t rea ted  HepG2 cells [Fig. 4(B), 
lanes 3 and 4]. 

DISCUSSION 

B 1 2 3 4 

CYP1B1 

GAPDH W D W  

Fig. 4. Northern-blot analysis of RNA from MCF-7 and 
HepG2 cells. Cultures of MCF-7 and HepG2 cells were treated 
with medium containing the solvent vehicle (0.1°/o v/v 
DMSO) or containing 10 nM TCDD. After 24h, total RNA 
was isolated from the cultures control MCF-7 (lane 1), 
TCDD-treated MCF-7 (lane 2), control HepG2 (lane 3), 
and TCDD-treated HepG2 (lane 4) by the method of 
Chomczynski and Sacchi [25] and subjected to Northern 
analysis as described under Materials and Methods. The blots 
were successively probed with ~2P-labelled CYP1AI or 
CYPIB1 and GAPDH cDNAs. In (A) RNA was hybridized 
with CYPIA1 and GADPH cDNAs; in (B) RNA was hy- 
bridized with CYPIB1 and GADPH cDNAs. The arrows to 
the right of each blot indicate the relative positions of the 28 

and 18S ribosomal RNAs. 

rates of 2- and 4-MeOE2 production in M C F - 7  cells, 
with the rate of 4-MeOE2 formation 32°.o that of 
2-MeOE2 formation in the TCDD-t rea ted  cultures 
(Table 3). In HepG2 cells, pretreatment with T C D D  
caused a 6.8-fold increase in the rate of 2-MeOE2 
production, whereas production of 4-MeOE2 was not 
significantly affected. 

The microsomal metabolism experiments indicated 
that T C D D  induced an E24-hydroxylase in MCF-7  
cells, but not in HepG2 cells, that was immunologically 
related to P450-EF  and P450-RAP.  We therefore 
investigated whether induction of an m R N A  homolo- 
gous to that of P450-EF  could be detected on Northern 
blots. The c D N A  previously referred to as clone 1 [15] 
that has now been designated CYP1B1 [16] was used 
to probe Northern blots, as it appears to be the human 
analog of the recently cloned P450-EF  c D N A  [18]. 

The metabolism of E 2 in a number of extrahepatic 
and hormonally responsive tissues has been investi- 
gated extensively, despite the fact that the observed 
metabolic rates are only a small fraction of those 
observed in the liver. Metabolism of E 2 to the cate- 
cholestrogens occurs in a number of extrahepatic tis- 
sues including the brain [34], ovaries [21, 35], uterus 
[4], placenta [36] and kidneys [6]. The physiologic 
significance of extrahepatic metabolism of E 2 is not 
clear. Rather than simply representing degradation 
productions of the hormone, autocrine or paracrine 
roles have been suggested for the catecholestrogens in 
several tissues including the stimulation of ovarian 
steroidogenesis [37] and the enabling of implantation 
[4]. Local synthesis of these highly reactive metabolites 
would thus be essential for these functions of cate- 
cholestrogens. Unlike the liver of both rats and 
humans, where substantial evidence indicates that 
cytochromes P450 of the CYP3A and, to a lesser 
extent, CYP1A subfamilies are involved in E2 hydrox- 
ylation [10, 11, 33], the relationship of the enzymes 
mediating extrahepatic catecholestrogen metabolism to 
the cytochrome P450 superfamily is entirely unknown. 

In some extrahepatic tissues such as the ovaries of 
the rat, 2-OHE2 is the principal catecholestrogen 
formed [35], as it is in rat liver. In contrast, microsomes 
from the rat anterior pituitary [5] and mouse uterus [4] 
catalyze low K,, E2 4-hydroxylation that predominates 
over the E2 2-hydroxylase activity. Syrian hamster 
kidney also appears to express a specific, low K,,, E 2 
4-hydroxylase, as the microsomal NADPH-dependen t  
E2 2- and 4-hydroxylases show differential inhibition 
by fadrozole hydrochloride, a compound that was 
developed as an inhibitor of aromatase [38], and their 
expression is affected quite differently by chronic treat- 
ment of the hamsters with E2 [6]. To  date no purified 
and reconstituted or cDNA-expressed cytochrome 
P450 has been shown to have the specific, low K, ,  E 2 

4-hydroxylase activity that would account for these 
observed microsomal activities. 

Normal human breast tissue generally has minimal 
E 2 hydroxylase activity, although breast tumors were 
found to catalyze significant levels of catecholestrogen 
formation [39]. MCF-7  breast cancer cells catalyze a 
very low rate of E2 hydroxylation that can be detected 
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r a d i o m e t r i c a l l y  and  by  analys is  o f  m e t h o x y e s t r o g e n s  in 
the  m e d i u m .  H o w e v e r ,  exposu re  o f  M C F - 7  cells to 
T C D D  was f o u n d  to cause  a m a r k e d  increase  in the  
m e t a b o l i s m  of  E 2, r e su l t ing  in dep le t i on  o f  the  ho r -  
m o n e  f rom the cu l tu res  [7]. T h e  ra te  of  c y t o c h r o m e  
P 4 5 0 - c a t a l y z e d  h y d r o x y l a t i o n s  o f  E 2 at the  C-2 ,  -15~, 
-6~ and  -4 pos i t ions  were  each h igh ly  e levated ,  
a l t hough  k ine t ic  ana lyses  i nd i ca t ed  tha t  the  C-2  and  -4 
h y d r o x y l a t i o n s  w o u l d  be the  mos t  phys io log ica l ly  re l -  
evant ,  as these  showed  m o r e  than  7- fo ld  h ighe r  cata-  

ly t ic  efficiencies (Vmax/Km) t han  the C-15c~ and -6~, 
ac t iv i t ies  [8]. T h e  resul ts  o f  a series o f  e x p e r i m e n t s  wi th  
specific an t i se ra  and  c D N A - e x p r e s s e d  enzymes  ind i -  
ca ted  tha t  the  E2 h y d r o x y l a t i o n s  at C-2 ,  -6c~, and  -15~ 
pos i t ions  ca ta lyzed  by  m i c r o s o m e s  f rom T C D D -  
t r ea t ed  M C F - 7  cells cou ld  be a t t r i b u t e d  to the  ac t iv i -  
t ies o f  C Y P 1 A 1 ;  however ,  the  low Km h y d r o x y l a t i o n  at 
C-4  a p p e a r e d  to be  ca ta lyzed  by  a d i f ferent  enzyme  [8]. 

T h e  resul ts  o f  the  p re sen t  s tudy  indica te  tha t  the  
T C D D - i n d u c e d  E2 4 - h y d r o x y l a s e  in M C F - 7  cells is an 
e n z y m e  tha t  is i m m u n o l o g i c a l l y  d i s t inc t  f rom CYP1A1 
and  is i m m u n o r e a c t i v e  wi th  an t ibod ie s  to cy toch romes  
P 4 5 0 - E F  and  P 4 5 0 - R A P .  C y t o c h r o m e  P 4 5 0 - E F  is a 
P A H - m e t a b o l i z i n g  enzyme  tha t  is i n d u c e d  by  P A H s  
and  T C D D  in C 3 H / 1 0 T 1 / 2  m o u s e  e m b r y o  cells [13] 
and  in mouse  E041 e n d o m e t r i a l  cells of  s t romal  or ig in  
[40]. C y t o c h r o m e  P 4 5 0 - R A P  also cata lyzes  P A H  
m e t a b o l i s m ,  and  is expres sed  in the  adrena ls ,  ovar ies ,  
and  tes tes  o f  the  rat  [41]. A n t i b o d i e s  to c y t o c h r o m e  
P 4 5 0 - E F  se lec t ive ly  inh ib i t  the  T C D D - i n d u c e d  Ez4- 
h y d r o x y l a s e  ac t iv i ty  in m ic ro somes  f rom T C D D -  
t rea ted  M C F - 7  cells,  and  an t ibod ie s  to cy toch romes  
P 4 5 0 - E F  and  P 4 5 0 - R A P  recognize  a T C D D - i n d u c e d  
52 k D a  p ro t e in  in i m m u n o b l o t s  o f  M C F - 7  mic rosomes .  
T h e s e  resul t s  sugges t  tha t  the  E z 4 - h y d r o x y l a s e  in-  
d u c e d  by  T C D D  in M C F - 7  cells is genet ica l ly  re la ted  
to c y t o c h r o m e s  P 4 5 0 - E F  and  P 4 5 0 - R A P ,  poss ib ly  a 
p r o d u c t  o f  the  same gene subfami ly .  

In  m a m m a l s ,  the  c y t o c h r o m e  P 4 5 0  supe r f ami ly  is 
c u r r e n t l y  d e s c r i b e d  as cons i s t ing  o f  12 gene famil ies  
wi th  22 subfami l i es  [17]. T h e  phys io log ic  func t ions  o f  
the  p r o d u c t s  o f  a n u m b e r  of  these  gene famil ies  are 
c lear ly  def ined ,  such as the  roles o f  C Y P  19 (a romatase)  
and  C Y P 2 1  ( s te ro id  21 -hydroxy la se )  gene p r o d u c t s  in 
the  syn thes i s  o f  s te ro id  h o r m o n e s  and  the role o f  C Y P 7  
(choles tero l  7c~-hydroxylase)  gene p r o d u c t s  in bi le  
salt fo rma t ion .  T h e  func t ions  of  cy toch romes  P 4 5 0  
e n c o d e d  by  genes  o f  the  C Y P 1 ,  C Y P 2  and  C Y P 3  

famil ies  are m o r e  b r o a d l y  def ined,  and  appea r  to be 
p r i m a r i l y  ca tabol ic  wi th  subs t r a t e  specif ici t ies  not  
conf ined  to endogenous  c o m p o u n d s .  N u m e r o u s  en-  
zymes  o f  these  famil ies  ca ta lyze  the  ox ida t ion  o f  d rugs  
and  o the r  xenob io t i c s  as well  as endogenous  s teroids .  
F o r  example ,  the  e s t ab l i shed  enzymes  o f  the  C Y P I  
fami ly ,  CYP1A1  and  C Y P 1 A 2 ,  are of ten  ident i f ied  by  
the i r  aryl  h y d r o c a r b o n  h y d r o x y l a s e  and  phe na c e t i n  
O - d e e t h y l a s e  act ivi t ies  respec t ive ly ;  however ,  bo th  are 
also E 2 2 - h y d r o x y l a s e s  [8, 10, 11]. 

T h e  iden t i f ica t ion  of  c y t o c h r o m e  P 4 5 0 - c a t a l y z e d  
P A H  m e t a b o l i s m  tha t  was i n d u c e d  by  A h - r e c e p t o r  
agonis t s  wh ich  was not  ca ta lyzed  b y  CYP1A1  or  
C Y P 1 A 2  led  to the  d i scovery  o f  P 4 5 0 - E F  [12]. T h e  
subse que n t  iden t i f ica t ion  o f  P 4 5 0 - R A P ,  wh ich  is con-  
s t i tu t ive ly  expres sed  in the  rat ,  and  the  c lon ing  of  the  
h u m a n  CYP1B1 [15, 16] t oge the r  wi th  the  charac te r iz -  
a t ion  o f  P 4 5 0 - E F ,  have p r o v i d e d  ev idence  for ad-  
d i t iona l  m e m b e r s  of  the  CYP1 family .  T h e  c o m p a r i s o n  
of  the  sequences  o f  the  CYP1B1 [16] and  P 4 5 0 - E F  [18] 
c D N A s  ind ica te  ex tens ive  homology ;  it is l ikely tha t  
P 4 5 0 - E F ,  P 4 5 0 - R A P ,  and  CYP1B1 rep re sen t  the  
p r o d u c t s  o f  o r tho logous  genes or  o f  closely re la ted  
genes of  the  rat ,  mouse  and  human .  T h e  5.2 kb  m R N A  
tha t  is i n d u c e d  by  T C D D  in M C F - 7  cells hyb r id i ze s  
wi th  the  CYP1B1 c D N A  u n d e r  h i g h - s t r i n g e n c y  con-  
d i t ions ,  sugges t ing  that  the  same gene is expres sed  in 
M C F - 7  and  S C C - 1 2 F  cells [15, 16] in response  to 
t r e a t m e n t  wi th  T C D D .  F u t u r e  s tudies  will  be d i r ec t ed  
towards  d e t e r m i n i n g  w he the r  the  low Km E2 4- 
hyd roxy la se  tha t  is i n d u c e d  in M C F - 7  cells is a p r o d u c t  
of  the  C Y P  1B 1 gene or  of  a closely re la ted  gene of  the  
c y t o c h r o m e  P 4 5 0  super fami ly .  
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